Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 37(7): 109997, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788630

RESUMEN

The anorexigenic effect of serotonergic compounds has largely been attributed to activation of serotonin 2C receptors (Htr2cs). Using mouse genetic models in which Htr2c can be selectively deleted or restored (in Htr2c-null mice), we investigate the role of Htr2c in forebrain Sim1 neurons. Unexpectedly, we find that Htr2c acts in these neurons to promote food intake and counteract the anorectic effect of serotonergic appetite suppressants. Furthermore, Htr2c marks a subset of Sim1 neurons in the paraventricular nucleus of the hypothalamus (PVH). Chemogenetic activation of these neurons in adult mice suppresses hunger, whereas their silencing promotes feeding. In support of an orexigenic role of PVH Htr2c, whole-cell patch-clamp experiments demonstrate that activation of Htr2c inhibits PVH neurons. Intriguingly, this inhibition is due to Gαi/o-dependent activation of ATP-sensitive K+ conductance, a mechanism of action not identified previously in the mammalian nervous system.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Anorexia , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Hambre/fisiología , Hipotálamo/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiología , Potasio/metabolismo , Receptor de Serotonina 5-HT2C/genética , Serotonina/metabolismo , Serotonina/farmacología , Serotoninérgicos
2.
Nature ; 519(7541): 45-50, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25707796

RESUMEN

Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide ß-endorphin. CB1R activation selectively increases ß-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.


Asunto(s)
Cannabinoides/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Hipotálamo/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Naloxona/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Proteína Desacopladora 2 , alfa-MSH/metabolismo , betaendorfina/metabolismo
3.
Cell Metab ; 18(3): 431-44, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24011077

RESUMEN

The dogma that life without insulin is incompatible has recently been challenged by results showing the viability of insulin-deficient rodents undergoing leptin monotherapy. Yet, the mechanisms underlying these actions of leptin are unknown. Here, the metabolic outcomes of intracerebroventricular (i.c.v.) administration of leptin in mice devoid of insulin and lacking or re-expressing leptin receptors (LEPRs) only in selected neuronal groups were assessed. Our results demonstrate that concomitant re-expression of LEPRs only in hypothalamic γ-aminobutyric acid (GABA) and pro-opiomelanocortin (POMC) neurons is sufficient to fully mediate the lifesaving and antidiabetic actions of leptin in insulin deficiency. Our analyses indicate that enhanced glucose uptake by brown adipose tissue and soleus muscle, as well as improved hepatic metabolism, underlies these effects of leptin. Collectively, our data elucidate a hypothalamic-dependent pathway enabling life without insulin and hence pave the way for developing better treatments for diseases of insulin deficiency.


Asunto(s)
Hipotálamo/efectos de los fármacos , Insulina/metabolismo , Leptina/farmacología , Neuronas/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Glucosa/análisis , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/mortalidad , Hipotálamo/metabolismo , Estimación de Kaplan-Meier , Leptina/uso terapéutico , Hígado/metabolismo , Ratones , Músculo Esquelético/metabolismo , Neuronas/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
4.
J Clin Invest ; 122(3): 1000-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22326958

RESUMEN

Leptin action on its receptor (LEPR) stimulates energy expenditure and reduces food intake, thereby lowering body weight. One leptin-sensitive target cell mediating these effects on energy balance is the proopiomelano-cortin (POMC) neuron. Recent evidence suggests that the action of leptin on POMC neurons regulates glucose homeostasis independently of its effects on energy balance. Here, we have dissected the physiological impact of direct leptin action on POMC neurons using a mouse model in which endogenous LEPR expression was prevented by a LoxP-flanked transcription blocker (loxTB), but could be reactivated by Cre recombinase. Mice homozygous for the Lepr(loxTB) allele were obese and exhibited defects characteristic of LEPR deficiency. Reexpression of LEPR only in POMC neurons in the arcuate nucleus of the hypothalamus did not reduce food intake, but partially normalized energy expenditure and modestly reduced body weight. Despite the moderate effects on energy balance and independent of changes in body weight, restoring LEPR in POMC neurons normalized blood glucose and ameliorated hepatic insulin resistance, hyperglucagonemia, and dyslipidemia. Collectively, these results demonstrate that direct leptin action on POMC neurons does not reduce food intake, but is sufficient to normalize glucose and glucagon levels in mice otherwise lacking LEPR.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal , Metabolismo Energético , Femenino , Glucagón/química , Homeostasis , Homocigoto , Hipotálamo/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Leptina/metabolismo
5.
Cell Metab ; 14(3): 301-12, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21907137

RESUMEN

Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuronas/metabolismo , Neuropéptidos/farmacología , Obesidad/metabolismo , Sirtuina 1/deficiencia , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Metabolismo Energético , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Inmunohistoquímica , Insulina/metabolismo , Insulina/farmacología , Resistencia a la Insulina , Leptina/farmacología , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Obesidad/complicaciones , Obesidad/patología , Orexinas , Técnicas de Placa-Clamp , Sirtuina 1/genética , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo
6.
Endocrinology ; 152(1): 11-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21068159

RESUMEN

Changes in physical activities and feeding habits have transformed the historically rare disease of obesity into a modern metabolic pandemic. Obesity occurs when energy intake exceeds energy expenditure over time. This energy imbalance significantly increases the risk for cardiovascular disease and type 2 diabetes mellitus and as such represents an enormous socioeconomic burden and health threat. To combat obesity, a better understanding of the molecular mechanisms and neurocircuitries underlying normal body weight homeostasis is required. In the 1940s, pioneering lesion experiments unveiled the importance of medial and lateral hypothalamic structures. In the 1980s and 1990s, several neuropeptides and peripheral hormones critical for appropriate feeding behavior, energy expenditure, and hence body weight homeostasis were identified. In the 2000s, results from metabolic analyses of genetically engineered mice bearing mutations only in selected neuronal groups greatly advanced our knowledge of the peripheral/brain feedback-loop modalities by which central neurons control energy balance. In this review, we will summarize these recent progresses with particular emphasis on the biochemical identities of hypothalamic neurons and molecular components underlying normal appetite, energy expenditure, and body weight homeostasis. We will also parse which of those neurons and molecules are critical components of homeostatic adaptive pathways against obesity induced by hypercaloric feeding.


Asunto(s)
Peso Corporal/fisiología , Homeostasis/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Neuronas/fisiología , Animales , Neuronas/citología , Transducción de Señal
7.
Endocrinology ; 151(11): 5415-27, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20881244

RESUMEN

Studies have indicated that the neurotransmitter nitric oxide (NO) mediates leptin's effects in the neuroendocrine reproductive axis. However, the neurons involved in these effects and their regulation by leptin is still unknown. We aimed to determine whether NO neurons are direct targets of leptin and by which mechanisms leptin may influence neuronal NO synthase (nNOS) activity. Nicotinamide adenine dinucleotide phosphate diaphorase activity and leptin-induced phosphorylation of signal transducer and activator of transcription-3 immunoreactivity were coexpressed in subsets of neurons of the medial preoptic area, the paraventricular nucleus of the thalamus, the arcuate nucleus (Arc), the dorsomedial nucleus of the hypothalamus (DMH), the posterior hypothalamic area, the ventral premammillary nucleus (PMV), the parabrachial nucleus, and the dorsal motor nucleus of the vagus nerve. Fasting blunted nNOS mRNA expression in the medial preoptic area, Arc, DMH, PMV, and posterior hypothalamic area, and this effect was not restored by acute leptin administration. No difference in the number of neurons expressing nNOS immunoreactivity was noticed comparing hypothalamic sections of fed (wild type and ob/ob), fasted, and fasted leptin-treated mice. However, we found that in states of low leptin levels, as in fasting, or lack of leptin, as in ob/ob mice, the number of neurons expressing the phosphorylated form of nNOS is decreased in the Arc, DMH, and PMV. Notably, acute leptin administration to fasted wild-type mice restored the number of phosphorylated form of nNOS neurons to that observed in fed wild-type mice. Herein we identified the first-order neurons potentially involved in NO-mediated effects of leptin and demonstrate that leptin regulates nNOS activity predominantly through posttranslational mechanisms.


Asunto(s)
Hipotálamo/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fosforilación/efectos de los fármacos , Análisis de Varianza , Animales , Ayuno/metabolismo , Femenino , Hipotálamo/efectos de los fármacos , Inmunohistoquímica , Hibridación in Situ , Leptina/farmacología , Ratones , Neuronas/efectos de los fármacos , Fosforilación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA